an Mil Allent Bere Staffra Lander Summer Hoss Strange John Hiber

Andre C. Mary

Team Water

Matther J. Mclettinh

Blake Stephen tustent

Julo Jand Bar

With Home,

MIN UN

May e

Solar Electric Aquatic Winged Air Yacht

"The new way to see new sights"

Presented by: Jared Boisvert Lauren Carethers Paarth Desai Amira Malik Josh Malone Joey Merkel Jax Rivers David von Wrangel

Presenter: Josh Malone

Outline

- 1. Motivation
- 2. General Overview
- 3. Subsystem Design
- 4. Risk
- 5. Conclusion

The Road to Seaway

- Allow people easy entry to the world of aviation
- Go see the great outdoors and be fully immersed in nature
- Do so in an environmentally friendly way

SEAWAY is born

- Ultralight!
 - Cheaper to operate and maintain, no pilot's license required
- Seaplane!
 - Can land in remote areas w/o a runway
- Solar Powered!
 - Completely off the grid for zero emissions

A		

Motivation

6

Slide Contributors: Josh Malone (L)

Targeted Audience

- Backpackers
- Wilderness Fishermen
- **Aviation Enthusiasts**
- Adventurous Professionals

AEROASTRO

Requirements

	Specification	Requirement
FAA	Stall Speed (power off)	<24 kts CAS
Part 103	Empty Weight	304 lbs (254 regular + 50 as seaplane w/ 2 pylons)
	Max Speed	<55 kts. CAS (full power in level flight)
16.82	In-Flight Emissions	Zero
	Range	>100 mi
Self-	Max Payload	260 lbs: 1 Passenger (230 lbs.) + cargo (30 lbs)
Imposed	Takeoff Distance	<1000 ft
	Runway Terrain	Water (Seaplane)

Outline

1. Motivation

2. General Overview

- a. Vehicle Configuration
- b. Mass Breakdown
- 3. Subsystem Design
- 4. Risk
- 5. Conclusion

Meet: SEAWAY

Meet: SEAWAY, Head-On

General Overview 10

Meet: SEAWAY, From the Top

Slide Contributors: Amira Malik (L)

General Overview 11

Meet: SEAWAY, Another Aside

Slide Contributors: Amira Malik (L)

General Overview 12

Solar Powered Cruise Throughout US

- Designed for use in 5 months with highest solar radiation
 - April to August
 - **June** has the highest solar flux graph next slide
 - \circ Rest of year \rightarrow solar radiation too low for reasonable wing area
- Designed for 800 W/m² solar flux
 - Tradeoff between usability and mass budget
 - Can operate below 800 W/m², but results in smaller range
- Coverage throughout US on clear days

Presenter: Lauren Carethers

Number of "clear" days:

Average **number of days** where solar flux exceeds 800 W/m² for any amount of time during a day

Hours of "solar cruise":

Average **hours per day** exceeding 800 W/m² on those days

Slide Contributors: Ethan Hammons (L), Lauren Carethers, Andrew Manwaring

General Overview 15

Slide Contributors: Ethan Hammons (L), Lauren Carethers

General Overview 16

Presenter: Josh Malone

Empty Weight Breakdown

- Current Empty Weight: 322 lbs
- Goal Weight (to be ultralight) 304
 - Currently 18 lbs overweight

Color Key		
Cockpit and Controls	Electrical	
Propulsion	Solar Panels	
Key Structures		

Structural Mass Budget

Part	Weight [lbs]	Sizing Case	
Main Wing	88.6	Bending, torsional stiffness	
Fuselage	47.7	Hydrodynamic drag, buoyancy	
Floats/Pylons	15.7	Water stability at rest	
Tail	14.2	Bending, some torsion	
TOTAL	166.2	51.3% of empty weight	

Propulsive and Electrical Mass Budget

Part	Weight [lbs]	Source	
Solar Cells	19.6	Part sourcing	
Solar Protective Coating (Halar [®] ECTFE)	9.7	Halar [®] ECTFE density & coating volume	
Adhesive/Glue	6	Estimated glue area and density	
Wiring	30	Est. wire size and length	
MPPT	13.2	Part sourcing	
Battery Packs	22	Part sourcing	
Propellers	12	Size and material considerations	
Motors	13.2	Part sourcing	
TOTAL	125.7	38.8% of empty weight	

Slide Contributors: Andrew Manwaring (L), Josh Malone, Lauren Carethers, Joey Merkel

Presenter: Josh Malone

Other Systems Mass Budget & Margins

Part	Weight [lbs]	Source	
Sensors	9.7	Avionics Architecture	
Instruments	9.5	Avionics Architecture	
Cockpit	10	Estimate from COTS parts	
Control Cables	1.2	COTS Wires, Pulleys, etc.	
TOTAL	30.5	9.9% of empty weight	

Payload Weight Contribution

ltem	Weight [lbs]	
Pilot Max	230	
Baggage Max	30	
TOTAL	260	

- Total Weight: 582 lbs
- At max payload, payload contributes 44.5% of weight
- Challenge for stability for different pilot weights

Presenter: Josh Malone

- 1. Motivation
- 2. General Overview
- 3. Subsystem Design
 - a. Wing
 - b. Fuselage
 - c. Stabilizers
 - d. Propulsion
 - e. Human-Machine Interface
- 4. Risk
- 5. Conclusion

Outline

3. Subsystem Design

a. Wing

- i. Aerodynamics
- ii. Solar Cells
- iii. Structural Components
- b. Fuselage
- c. Stabilizers
- d. Propulsion
- e. Human-Machine Interface

Modeling Overview

Assumptions:

- Viscous flow estimated via panel method within order of magnitude
- Bodies & Aero Surfaces have no interacting effects

Compensations:

- 5% drag margin
- Meaningful analysis limited to small angles

Wing Powered by the Sun

2D Aerodynamic Performance

3D Aerodynamic Performance

AEROASTRO

Slide Contributors: Amira Malik (L)

Subsystem Design – Wing 27

Presenter: Lauren Carethers

Solar Cell Selection

- SunPower C60 Solar Cell
- Commonly used in solar aviation
- Mono Crystalline Silicon
- Can be place anywhere on wing

Efficiency	22.5
Weight [lbs/cell]	0.014
Max Bend Angle	30°
Cost [\$/cell]	3.4

Presenter: Lauren Carethers Solar Cell Layout # of strings In column 1 string $V_{mpp} = 0.58V$ 1 Cell* Total Area of Solar Cells = $19.25 \text{ m}^2 \rightarrow 75\%$ of wing area = 5.93A 1232 cells on 1 wing \rightarrow 2464 cells in total 1 String = 16.27V ^{mpp} = 5.93A 28 Cells* 1 Wing * Electrical specifications tested at 1000W/m2 flux P_{total, wings} = 3400W > 3300W Cruise Requirement 44 Strings** ** 800W/m2 flux 29

Slide Contributors: Blake Shepherd (L), Lauren Carethers

Subsystem Design – Wing

Presenter: Lauren Carethers

Solar Cell Protection

- Cover cells in a single layer of Halar® ECTFE
 - Semi-crystalline fluoropolymer
 - Used on Solar Impulse 2
 - Strong, smooth and transparent
 - Abrasion and chemical resistant
 - Excellent weathering properties
 - \circ Low permeability \rightarrow protects against various liquids and gases
- Smooth finish reduces drag across panels

Solar Cell Attachment

- Flexible solar cells attach to the wing fabric with Sikaflex[®]-221 glue
- Solar cells connected in series via SunPower C60 Dog Bone Tabbing Wire Connector

Slide Contributors: Lauren Carethers (L), Summer Hoss, David von Wrangel

Presenter: Lauren Carethers

Solar Cell Attachment

Presenter: Jared Boisvert

Structural Components of the Main Wing

Presenter: Jared Boisvert

0.12 inches (3mm) closed-cell foam core

* thicknesses not to scale

Slide Contributors: Charlotte Gump (L)

Sizing Requirements Dominated by Stiffness

D-Box sized for torsional loads

Sizing case: Max aileron deflection, tip twist limit of 2 degrees Sized for both strength and stiffness \rightarrow stiffness dominates sizing requirement Result: **Gauge limited**

Spar caps sized to limit tip deflection to 6 degrees at a load factor of 4

Shear web is also gauge limited, therefore shear requirement is satisfied by the vertical side of the D-Box

Presenter: Jared Boisvert

Solar Cells Sandwiched in Wing Skin

Outline

- 3. Subsystem Design
 - a. Wing
 - b. Fuselage
 - i. Shape & Design
 - ii. Structural Components
 - c. Stabilizers
 - d. Propulsion
 - e. Human-Machine Interface

Fuselage Sized by Payloads

Slide Contributors: Amira Malik (L)

Meet the Fuselage

Hull: How to Compromise on Drag

Hull: The Drag Loop

Slide Contributors: Alberto Pena (L), Jax Rivera, Amira Malik

Presenter: David von Wrangel

Determined Planing Hull Geometry

Slide Contributors: David von Wrangel (L), Alberto Pena, Amira Malik

Bulkheads Positioned by Load Pathing

Slide Contributors: Amira Malik (L)

Fuselage Structure Sized by Landing

- Recommended sizing from 14 CFR 25.527
 - Solving gives us 1.61x load factor
 - Minimum from same regulation is 2.33x
- Going with 2.5x gives us >1.5x safety factor

$$n_w = \frac{C_1 V_{S0^2}}{\left(\operatorname{Tan}^{\frac{2}{3}}\beta\right) W^{\frac{1}{3}}}$$

- Each bulkhead takes 191 lbs of weight
 - Most pilots can step on bulkheads as they step in
 - Preliminary: structures made of same cross-section as spar ^

Hull & Bulkhead Cross-Section

Slide Contributors: Amira Malik (L)

Stepping into the Fuselage

While unloaded:

- Plane rests on tail (8°)
- Door doesn't interfere with bulkheads
- Pilot steps on front bulkhead **slowly**
- Enough room for pilot to pivot around, sit, and extend legs to pedals

While loaded:

Waterproof mylar/carbon connection

- Plane rests on hull (0°)
- Mylar door is closed (zipped or velcro'd)
- If cargo, pilot set inside before stepping in
- To leave: pilot steps on bulkhead, slowly steps out, letting plane rest on tail

Approx. door line.

Slide Contributors: Amira Malik (L)

Outline

- 3. Subsystem Design
 - a. Wing
 - b. Fuselage
 - c. Stabilizers
 - i. Empennage
 - ii. Ailerons
 - iii. Elevator
 - iv. Rudder
 - v. Pylons
 - d. Propulsion
 - e. Human-Machine Interface

Tail Size Dominated by Minimizing Weight

Slide Contributors: Amira Malik (L), Fritz Humm

Subsystem Design – Stabilizers 48

CF Layup

Boom Is Carbon Fiber Composite Sandwich Tube

- Tube chosen for its good bending and torsional resistance
 - Bending deflection in z-axis is primary sizing case (lift and weight)
 - Torsion considered for rough landing
- 1 layer CF + thin layer of foam + 1 layer CF
 - Prevent ovalization or denting
 - Relatively lightweight

Presenter: David von Wrangel

Structure of Stabilizers is Carbon Fiber Shell

Slide Contributors: Summer Hoss (L), Amira Malik

Subsystem Design – Stabilizers 50

Presenter: Jax Rivera

Aileron - Geometry

20% root chord, 20% semispan from tip, max deflection 25°

Slide Contributors: Jax Rivera

Subsystem Design – Stabilizers 51

Presenter: David von Wrangel

Stabilizer Mounting Configuration

Moulded base

- Saves overall weight, is structural and constructable
- Foam adapters interface stabilizer with boom tube
- Unidirectional CF layup for strength

Presenter: Jared Boisvert

Pylon + Floats

- Float placement constraints
 - Propeller clearance from waves at rest (>18in)
 - Float clearance during landing (>18in)

- Floats attached to wing with pylon structures made from symmetric airfoil shaped carbon fiber tubes
- Ultimate constraint for placement of floats is maximizing distance from waterline on landing

Configuration when resting on floats

Configuration when flat in water/airborne

Pylon Connection

- Two front pylons are connected to the spar
- Back pylon connects to a reinforced CF rib
 - Rib is reinforced and attached to the spar with supports so the float assembly can withstand hard landings
- Molded inverted-wingtip design not possible due to wing structure

Float Sizing and Shaping

- Floats were sized to correct for 15 mph winds when at rest and support the weight of the wing
 - Provide roll-axis stability in water
 - Designed to provide 1.5x needed moment for safety margin
- Required Volume (per float) > 2.35 ft³
- Floats have a planing surface and step to reduce hydrodynamic drag and encourage separation from the water

Outline

- 3. Subsystem Design
 - a. Wing
 - b. Fuselage
 - c. Stabilizers
 - d. Propulsion
 - i. Propulsion Requirements
 - ii. Propeller
 - iii. Motor
 - iv. Battery
 - v. MPPT
 - e. Human-Machine Interface

Take Off Power Sizes the Propulsion System

"What does the plane need to do that the solar panels can't provide?"

Take-Off Power >> Cruise Power

Subsystem Design – Propulsion 57

Planing Speed Sets Minimum Thrust

Subsystem Design – Propulsion 58

Slide Contributors: Amira Malik (L)

EROASTRO

Powertrain Power Requirements & Efficiencies

Slide Contributors: Blake Shepherd (L), Joey Merkel, Michelle Luo, Andrew Manwaring

Subsystem Design – Propulsion 59

Propeller Designed For Cruise

- QMIL Propeller Design
 - 2-bladed, 1.4m (4.6ft) diameter propellers
- Considerations:
 - Torque set < 20 Nm

- Q_{cruise} < Q_{max}
- Thrust / Power set by T/O Sim

Subsystem Design – Propulsion 60

Propeller Performance

QPROP analysis*

AEROASTRO

λ	0.17	
$arOmega_{ m cruise}$	1340 RPM	
$\eta_{\it prop,\ cruise}$	84%	
Q _{cruise}	15.86 N-m	
P _{takeoff} (V=12 m/s)	2225 W	
P _{cruise} (V=17 m/s)	1565 W	
Voltage	96 V	
K _{V, required}	14	

Subsystem Design – Propulsion 61

Slide Contributors: Matt McGillick (L)

Motor/Motor Controller Selection

Manufacturer	MAGicALL
Model	6
Torque, max	18 N-m
RPM, max	8000
KV	83 (Will rewind)
Mass	1.5 kg
Efficiency	90.5%
Cooling	Air flow on fins
Dimensions	4.5" diam. 3.5" leng.

Subsystem Design – Propulsion 62

Presenter: David von Wrangel

Motors Attached via Composite Mount

- Motors interfaced with main wing on D-box and main spar using foam adapters
- Attach motor mount via foam adapters and molded carbon fiber composite
- Screw motor on mounting plate

Battery Specifications & Selection

Chemistry	Li-Po
Capacity	21.7 Ah
Voltage	96 V
Cells in series	26
Cells in parallel	10
Weight	19.5 lbs
Volume	316 cubic inches

Battery Cell Specifications			
Capacity 2.2 Ah			
Voltage	3.7 V		
Max C-Rate	5		
Cell Energy Density 260 Wh/kg			

Subsystem Design – Propulsion 64

Battery Charge/Discharge

Flight Phase	Time	Battery Energy used	Battery Charge Used (21.7 Ah total capacity)	SOC (End of Phase)
Take-off	30sec	5.5Whr	0.054 Ah	99.66%
Climb (50ft)	8sec	10.80Whr	0.2 Ah	99.01%
Cruise (charging)	40min (13min / 1 DOD)	CV = 109.2V	-	100%
Cruise (Battery Powered)	30min	1650Whr	17.2 Ah	20.78%

Slide Contributors: Blake Shepherd (L), Michelle Luo, Andrew Manwaring

Subsystem Design – Propulsion 65

Manufacturer	MakeSkyBlue
Model	96V45A
Max Current Output	45A
Voltage Output	96V
Max PV Input Power	4500W
Max Efficiency	98.2%
Total Mass	1.1kg
Dimensions/unit	8.5"x 4.5" x 2.0"

- Matches battery voltage
- PV power < Max input power

Circuit Diagram

- MPPT inputs variable panel voltage (up to 500V), outputs 96V
- DC/DC converter inputs 96V from battery, outputs 28V for avionics

Outline

- 3. Subsystem Design
 - a. Wing
 - b. Fuselage
 - c. Stabilizers
 - d. Propulsion
 - e. Human-Machine Interface
 - i. Avionics
 - ii. Cockpit
 - iii. Control Routing

The Human-Machine Interface

Slide Contributors: Amira Malik (L)

single or multiple sensor failures

Slide Contributors: Amira Malik (L)

Simple Instruments

		Part	Weight (lbs)	Power @ 28V (W)
30W 96V/28V DC-DC	Ţ	Garmin G5	0.84	2.8
		Custom EPFD	2.00	3.0
		Strobe Lights (x2)	0.22	3.0
	ļ	Air + Marine Radio	1.22	12
		100' 12AWG Wire	4.00	-
		Variometer	1.01	0
		Total	9.50	23.8

()

0-0-0-0

MPPT

Slide Contributors: Amira Malik (L)

Slide Contributors: Amira Malik (L)

Slide Contributors: Amira Malik (L)

Subsystem Design – Human-Machine Interface 73

AEROASTRO Slide Contr

Slide Contributors: Amira Malik (L)

Subsystem Design – Human-Machine Interface 74

Presenter: Amira Malik

Simple Controls

Slide Contributors: Mohamed M(L), Summer

Subsystem Design – Human-Machine Interface 75

Outline

- 1. Motivation
- 2. General Overview
- 3. Subsystem Design
- 4. Risk
- 5. Conclusion

Risks

- Project risk: Currently over ultralight requirement weight by 18 lbs
 - Key components to check: Electrical wiring, wing, planing hull.
- Current configuration allows a pilot of 170 lbs with full 30 lb cargo, or a pilot 155 lbs or lighter with no cargo.
 - To expand our pilot weight envelope, we can move the batteries or the entire hull a bit forwards to better align the CG's of the pilot and the empty weight
- Motors and Propellers currently not powerful enough to sustain necessary thrust
 - Will be analyzed and fixed

Outline

- 1. Motivation
- 2. General Overview
- 3. Subsystem Design
- 4. Risk
- 5. Conclusion
 - a. Short Term
 - b. What's Next?
 - c. Special Thanks!

Possible Short-Term Design Improvements

- Further airfoil modification for high L/D low Re
- Modeling viscous and interference drag more accurately
- Turbulent flow visualization for total energy probe placement
- Verify the dynamic stability polars are sufficient
- Load pathing between major elements
 - Tail -> Bulkheads -> D-Box
 - Pylon bracing to wing structure
 - Wing skin load paths

- Buy it all components are either COTS or its constituents are defined
- Build (some of) it with current sketches, test structures can be built
- Test it each test section is verified before being built in their final form
- Build (all of) it from testing, the design can be modified and built
- Fly it on-ground system tests leading to flight tests
- Sell it purchase a factory and undergrad labor to assemble and deliver

Special Thanks

AEROASTRO

R. John Hansman Mark Drela Peter D. Sharpe Jessie Stickgold-Sarah Rebecca Thorndike-Breeze Robert Liebeck Demet

Team Air, our good competition

Backup Slides

Possible Scale Models

Major Risk: Weight & Size Mitigation: Scale Design

By Dimension	Wingspan (ft)	MTOW (lbs)	Payload (lbs)	Certification Type
Full Scale	74	582	260	Piloted Ultralight
6/7 Scale	63	370	163	Piloted Ultralight
3/4 Scale	56	245	110	UAV (Waiver Needed)
1/2 Scale	37	73	33	UAV (Waiver Needed)
4/9 Scale	33	51	23	107 Compliant
1/3 Scale	24	22	10	107 Compliant

Aerodynamics

Presenter: Amira Malik Modified Eppler 603 Airfoil E603 Modified E603 Slight Camber C_{p} -0.8 -0.4 .0.2

Q

--1.0

Slide Contributors: Amira Malik (L)

Modified Eppler 603 Airfoil

Slide Contributors: Amira Malik (L)

86

Wing Design Formulation

Known Variables

The governing equations

$L = \frac{1}{2} C_L \rho S V^2$
$D = \frac{1}{2}C_D\rho SV^2$
$P_{required} = \frac{S}{\eta_P} \sqrt{\frac{2}{\rho}} \left(\frac{C_D}{C_L^{\frac{3}{2}}}\right) \left(\frac{W}{S}\right)^{3/2}$
$P_{generated} = \eta_p \eta_m \eta_s \eta_a SQ$
$\frac{T}{W} = qC_D\left(\frac{1}{\frac{W}{S}}\right) + k\left(\frac{1}{q}\right)\left(\frac{W}{S}\right)$

With W=L, all can be parametrized by speed So, code sweeps speeds

EROASTRO

ymbol	Known Variables	Value (SI units)
L, W	Weight-Force at Cruise [6]	2510 N
ρ	Density Altitude [6]	$.91 \ \mathrm{kg/m^3}$
Q	Determined Value [2]	800 W/m^2
η_s	Determined Value [3]	22.4%
η_p	Determined Value [4]	76.5%
η_m	Determined Value [4]	96.22%
η_a	Determined Range [5]	[75%, 85%]

Initial Design

Variable	Assumed Value
airfoil	Eppler 603
L/D, aircraft	22
L/D, wing	36
\mathcal{R}	15
е	.8
c_L	1.2

he dimensions of the wing dimensions from which we start

Presenter: Amira Malik

Wing Design Speed Sweep Results

Slide Contributors: Amira Malik (L)

Backup slide: Air Drag of Bodies Build Up

MASTER VAR	IABLES	WETTE	DAREAS	ESTIMATED CDs	3	CRUISE	BODY DRAG	
Speed	17	Fuselage	9	Fuselage (NACA0030)	0.02	Fuselage	31.86225	91.0
Air Density	1.225	Sponsons	0.1884954	Sponsons (NACA0040)	0.01	Sponsons	0.3336604199	1.0
Water Density	1027	Tail Boom	0	Tail Boom (cylinder)	0	Tail Boom	0	0.0
		Struts	0.16	Struts (NACA0010)	0.005	Struts	0.14161	0.4
		Wing	25.76	Wing (Eppler 603)	0	Wing	0	0.0
		H-Stab	0.8461	H-Stab (NACA0008)	0.008	H-Stab	1.19816221	3.4
		V-Stab	1.05	V-Stab (NACA0008)	0.008	V-Stab	1.486905	4.2
						Drag	35.02258763	
						Lift	2510	
		CdA is compara	ble					
		CdA of a step is	equal to the area of the st	tep no question, always dragy		L/D	71.66821157	
						CD	0.005346734692	

Power

Takeoff Simulation Forces

Assumptions:

- Plane "snaps" from pre to post planing
- Linear decrease in area between planing and liftoff

Subsystem Design – Propulsion 91

Propulsion Requirements Recap

Cruise power comes from solar panels with 100W margin

Cruise-Climb power comes from solar panels with 0W margin (~100 fpm)

Takeoff power requirement comes from takeoff sim

Expedited climb has no requirement: if needed, will come from battery margin

Cruise Propulsion		Climb Propulsion		Takeoff Propulsion	
Cruise Thrust	195 N	Climb Thrust	200 N	Takeoff Thrust	275 N
Cruise Speed	33 KCAS	est. V _y Speed	35 KCAS	Avg. Speed	28 KCAS
Cruise Power	3300 W	Climb Power	3400 W	Takeoff Power	4000 W
Power Margin	+100 W	Power Margin	-0 W	Power Margin	-600 W

Subsystem Design – Propulsion 92

Solar Cell Protection Backup

- Cover cells in a single layer of Halar® ECTFE
 - $\circ \quad \mbox{Resistant to UV light radiation} \rightarrow $$ irrelevant!$
- Typical solar cells perform best in
 0.4–1.1 µm wavelength range (visible light and IR)
 - Outside of UV 0.01-0.4 μm wavelength range
- SR = current generated by cell + power incident on cell

1.2

Presenter: Lauren Carethers

Solar Cell Protection Backup

- Cover cells in a single layer of Halar® ECTFE
 - $\circ \quad \mbox{Resistant to UV light} \\ \mbox{radiation} \rightarrow \mbox{irrelevant!} \\$
- Highest quantum efficiency in **visible light spectrum** for typically solar cell
- SunPower C60 cells also do well in IR

number of carriers collected by cell + number of photons of a given energy incident on the solar cell

Presenter: BACKUP SLIDE

Battery Weight Breakdown Backup Slide

Sized by		Endurance	Sizing	Power Sizing	
Sized by max power needed and capacity			26.0	26.0	
	parallel strings	11.0		7.0	
	number of cells	286.0		182.0	
	cell mass	9.0		5.7	kg
	pack mass (inc BMS)	9.7		6.2	kg
	pack mass in lbs		21.4	13.6	lbs
	Specific Energy	260	Wh/kg	Li-ion	
	Specific Power		W/kg	Li-ion	
	depth of discharge	0.8			
	cell capacity	2.2	Ah		
	cell voltage	3.7	V		
	max C rate	5			
	mass per cell	31.3	g	High Rate Disch	arge Li
	battery packing factor	0.92		Polymer Battery	part

Presenter: Solar Cell Placement Backup Solar cell max bend angle = 30deg

30deg

.125m Solar Cell

S=R(theta)

0.238m = min radius

The contour of the wing never forms a curve that's sharper than this circle so the solar cell can be placed anywhere

Subsystem Design – Propulsion 97

Slide Contributors: Matt (L)

Propeller Backup

• $\eta_i = 89\%$

EROASTRO

- Induced efficiency is a little low, could increase propeller radius to help
- Power consumption sensitive to voltage, thrust, $d\beta$
- Variable pitch is an option, but increases motor weight

Presenter:

Structures

Wing Weight Breakdown

Component	Weight [lbs]	Weight [kg]	Sizing Case
D-Box	31.6	14.3	Torsional stiffness
Spar Caps	26.4	12.0	Bending stiffness
Ribs	10.8	4.9	Bending stiffness
Fabric	13.3	6.0	Standard
Trailing edge support, aileron hinge	6.5	2.9	Best guess
Total	88.6	40.2	

Boom Weight and Sizing from Bending

Assumed Forces for Boom and Stabilizer Calcs

Force	Value	Notes
Horizontal stabilizer lift	812 N	-z direction, elevator fully deflected
Vertical stabilizer lift	552 N	+/- y direction, rudder fully deflected
Weight of horizontal stabilizer	30 N	-z direction
Weight of vertical stabilizer	35 N	-z direction

Stabilizer CF Layer Thicknesses

Quantity	Value	Notes
# of layers on skin	2	For both horizontal and vertical stabilizers
# of layers for D-box	2	For both stabilizers, 4 total with skin layered on top
# of layers in web	4	For both stabilizers
# of layers for kevlar membrane	1-2	For both stabilizers
Horizontal stabilizer sparcap area	0.0151 in ²	Cross-sectional area
Vertical stabilizer sparcap area	0.0114 in ²	Cross-sectional area

Hull Design

Fuselage/Planing Hull Sizing References

- 1) Hoerner's Fluid Dynamic Drag
 - a) For axisymmetric streamlined components (assuming d = 1.37 m and l = 6.096 m)
- 2) Planing Flow Lift and Drag Modeling Module on Canvas
- 3) Gudmundsson's General Aviation Aircraft Design: Applied Methods and Procedures Appendix C3: Design of Seaplanes

Fuselage/Planing Hull Sizing

Froude's liquid resistance formula:

$$R_{Froude} = f \cdot S_{wet} \cdot V^n$$

(C3-18)

Presenter:

Where: f = Coefficient of frictional resistance $S_{wet} = Wetted area in ft^2$ V = Speed in knotsn = Constant, dependent on surface quality.

The term f varies depending on surface quality. For surfaces ranging from 2 to 20 ft in length, it can be taken to be 0.012 to 0.010 for smooth surfaces, 0.0231 to 0.0137 for surface quality resembling fine grit sandpaper, 0.0257 to

$$V = Fr_{\min} \sqrt{g\ell}$$

$$C_L \simeq C_{L_{\max}}$$

$$S_{\min} = \frac{W}{\frac{1}{2}\rho V^2 C_L}$$

$$Fr_{\min} = 1.5 \text{ and } C_{L_{\max}} = 0.1, \text{ although the}$$

$$U$$

$$C_L \simeq \begin{cases} \frac{\pi}{2} \frac{AR}{1+AR} \alpha , \quad AR \gg 1 \\ \frac{\pi}{4} AR \alpha + 0.88 \alpha^2 , \quad AR \ll 1 \end{cases}$$

$$\mathcal{V}_{\min} \geq k \frac{W}{\rho g}$$

CDA vs alpha

Although alpha and planing length are coupled in the equations we see before, we can actually get a sense of what the optimal alpha value is for a given length. The graph is a CDA vs alpha graph of our dimensions. As you can see, an alpha of 4 degrees results in a CDA of about 0.006 m^2.

Presenter:

Planing Hull Optimization Results

Backup Slides 107

Context for the graphs on the previous slide

By varying the Frmin and freezing the beam length to be 1.0668 m, we can see how Frmin affects our hydrodynamic performance. The graph on the left show Min CDA vs Frmin and the respective planing velocity. Although the Fr number decreases the min CDA during planing, the planing velocity is actually significantly increases. This can explained with the graph on the right. The length of the planing surface is decreasing because, but because the Froude number² is a ratio of the total length vs the planing length, the total length of the hull actually increases (explaining the increase in planing velocity). We want to be planing quick to reduce the effects of pre-planing drag.

Planing Hull Optimization Continued

From these graphs, it is clear that although you are potentially increasing the planing CDA by about 50 percent going from a beam length of 1 m to 2 m, the total length of the hull decreases significantly, as well as the planing hull. This is consistent with the block diagram where we want a larger beam so that we can plane quicker.

Fuselage/Planing Hull Sizing

The total drag, based on wetted area is consequently

$$C_{\text{Dwet}}/C_{\text{f}} = 1 + 1.5 (d/l)^{3/2} + 7 (d/l)^{3}$$
 (28)

The graph shows that the third term of this equation is practically negligible up to $d/1 \approx 0.2$.

Frontal Area. The wetted surface area of streamline bodies is approximately

$$S_{wet} = (0.7 \text{ to } 0.8) \text{ (perimeter)}$$

Presenter:

$$CDA = A_{\text{wet}} \bar{C}_f K_f$$
 (streamlined component)

friction coefficient $\bar{C}_{f}(R_{\ell},R_{\ell_{x_{tr}}})$ is assumed to correspond to that on a ix of laminar and turbulent flow values $\bar{C}_{f_l}, \bar{C}_{f_t}$, and depends on the lember Re_{ℓ} , and the transition-length Reynolds number $Re_{x_{tr}}$. Approxi ven in many references, e.g. Schlichting's Boundary Layer Theory,

$$\bar{C}_{f_l} = \frac{1.328}{Re_{\ell}^{1/2}} \qquad \text{(fully laminar)}$$

$$\bar{C}_{f_t} = \frac{0.455}{(\log_{10} Re_{\ell})^{2.58}} \qquad \text{(fully turbulent)}$$

Fuselage/Planing Hull Drag

Given the beam, Fr, alpha, and hull lengths, I approximated the CDA of the skin friction drag on the fuselage to be 0.081 m². It is safe to say that the induced drag from the fuselage is negligible because the ratio max fuselage width (roughly 4.5') to the total span of the main wing is miniscule. I didn't account for any appendages either. Either way, the equations above tell is that larger fineness ratios larger fineness ratios (i.e. smaller D/L) result in lower CDA fuselage which again supports the block diagram in the main presentation (slide 38). Our numbers on slide 39 provide acceptable CDAs for both cruise and takeoff (at 1000').

Human-Machine Interface

Sensors/Instruments Justification

Why Any Primary Flight Display (PFD)?

There is no requirement for ultralights and little need for VFR flight outside of airspeed and altitude. However, we prioritize safety and want to mitigate inadvertent IFR flight, so having airspeed, altitude, pitch angle, roll angle, turn coordinator makes the plane much much safer.

Why a Variometer?

We have twin electric motors and can fly on just solar power, but with our wing, you can also simply soar! To have an accurate vertical speed and aircraft energy, a variometer is very helpful.

Why Strobes?

We have a large wingspan and being electric, we are quiet. We need some sort of lighting for hazard avoidance and for people to notice the aircraft approaching unprepared bodies of water. There is no real need for navigation, landing, or taxiing lights, and strobe lights strobe, and so draw more attention. And being on either wingtip shows people on the ground how large our wingspan is. **Why custom EPFD?**

We need to know the state of charge, charge flux, and temps for each component, and motor RPM. It's likely either no COTS solution would exist for this specific use case or that such solution would have to be heavily modified, so we assume a custom EPFD.

Why two radios?

While both are VHF radios, marine and air radios are either AM or FM and thus have different circuits and antennas. Since we fly but also land on water, we need both types to communicate with all other relevant vehicles to our operation.

Why external antennas?

We are concerned about EMI in the aircraft; if, once built, EMI is not an issue, the antennas can be easily relocated inside the cabin

Presenter: Amira Malik

Handheld Radios are Lighter & Cheaper

Presenter: Amira Malik

Electronic PFD is Lighter (primary flight display)

Slide Contributors: Amira Malik (L)

Drawing the EPFD

Slide Contributors: Amira Malik (L)

Control Hinge moment and Stick Force

Takeaway:

Max deflection, 40kts

 Aileron(20% semi span, 20% Chord) experience 55lbs stick force

Control Hinge moment and Stick Force

Takeaway:

- Max deflection, 40kts
- Partial H-Elevators Ce/Ch~0.41 require 100lbs stick force.

80Nm/100lbs

Control Hinge moment and Stick Force

Takeaway:

- Max deflection, 40kts
- Full V-Stab at 60lbs stick force

Generalised Controls Modelling of Pulleys

Model Constraints and Assumption:

- General legal constraints of 40-67lbs stick forces for ailerons and 100lbs-167lbs for elevator as in figure 2
- All pulleys will be modelled in the fashion of figure 1

AEROASTRO

Pulley Modelling and Equations

Slide Contributors: Mohamed Mohamed

Aileron Hinge Moment and Pulley Analysis

Design Choice:

 Based on XFLR5 analysis, it seems appropriate to use a 0.8m lever arm with a pulley radius of 0.27m causing a cable tension of 980N and matching 300 Nm hinge control moment at 55 lbs stick force.

$$M / b = q * C_{M} * c_{ref}^{2}$$

$$Definition:$$

$$M, Moment, Newton - meter$$

$$b, Aileron Span, meter$$

$$C_{m}, Moment Coefficient, Dimensionless$$

$$c_{ref}, Chord reference, meter$$

$$q, Dynamic Pressure, Pascal$$

Fig: Non-dimensional moment coefficient vs AoA at 40kts

0.15

0.05

Slide Contributors: Mohamed Mohamed

Subsystem Design – Human-Machine Interface 122

Alpha

20

Elevator Hinge Moment and Pulley Analysis

Design Choice:

 Based on XFLR5 analysis, it seems appropriate to use a 0.8m lever arm with a radius~0.04m for the aileron bell-crank pulleys causing a cable tension of 1780N and matching 80Nm control hingemoment at 100lbs for maximum deflection.

Presenter:

Fig Jax River. Local Cl vs Span at 0 AoA. Red is at max deflection of 25°

Design Choice:

The previous Local Cl vs Span profile can be used to deduce a lift and hence a theoretical upper bound moment, if we take the lift generated at cruise speed as acting at the Cg of the elevator and assume Cl of +-1.25. We are also assuming a Cp~1 across the surface on the partial elevator.

$$C_{l} = 2L/\rho u^{2}S$$

$$1.2 = 2 * L/(1.224 * 21^{2} * 1.2)/L = 389N$$

$$H_{moment, elevator} = 259N * 0.17 m$$

$$H_{moment, elevator} = 66 Nm$$

Fig calculating hinge moment of elevator

Cable Routing Estimates

Fig Lower Bound Cable Length

Slide Contributors: Mohamed Mohamed

Control Surfaces

Elevator Performance

- Chosen size gives us an additional 0.13 m in allowable aft CG Range
- This size was also chosen to account for possible underestimations in the sizing process

* : current plane CG estimation

Subsystem Design – Stabilizers 127

Presenter: Paarth Desai

Elevator Performance

Coefficient of Lift for the Elevator: **-1.2**

Maximum Elevator Stick force

Courtesy of Jax Rivera via XFLR5

Subsystem Design – Stabilizers 128

Presenter: Paarth

Elevator Sizing Calculations

$$L_{h} = \frac{\begin{pmatrix} L_{wf}(x_{mg} - x_{ac_{wf}}) + M_{ac_{wf}} + ma(z_{cg} - z_{mg}) - \\ -W(x_{mg} - x_{cg}) + D(z_{D} - z_{mg}) - T(z_{T} - z_{mg}) - I_{yymg}\bar{\theta} \end{pmatrix}}{x_{ac_{h}} - x_{mg}}$$

$$C_{L_{h}} = C_{L_{\alpha_{h}}} \propto_{h} + C_{L_{\alpha_{h}}} \tau_{e} \delta_{e}$$

$$\alpha_{h} = \alpha + i_{h} - \varepsilon$$

$$\varepsilon = \varepsilon_{0} + \frac{\partial \varepsilon}{\partial \alpha} \alpha_{w}$$

$$\delta_{e} = \frac{\left(\frac{T * Z_{T}}{\bar{q} * S * \bar{C}} + C_{m_{0}}\right) C_{L_{\alpha}} + (C_{L_{l}} - C_{L_{0}}) C_{m_{\alpha}}}{C_{L_{\alpha}} C_{m_{\delta_{e}}} - C_{m_{\alpha}} C_{L_{\delta_{e}}}}$$

$$C_{m_{\delta_e}} = -C_{L_{\alpha_h}} \eta_h \bar{V}_h \frac{b_e}{b_h} \tau_e$$
$$C_{L_{\delta_e}} = C_{L_{\alpha_h}} \eta_h \frac{s_h}{s} \frac{b_e}{b_h} \tau_e$$

_

Presenter: Paarth

Elevator Performance Metrics

τ_{e} (Elevator Effectiveness)	0.62
$C_{m\delta e}$ (Rate of change of the aircraft pitching moment with respect to elevator deflection)	-1.11 1/rad
$C_{L\delta}$ (Rate of change of the aircraft lift coefficient with respect to elevator deflection)	0.129 1/rad

Rudder Sizing Calculations

Rudder Sizing Assumptions

Dengine out	7.5 N	Estimated upper-bound of additional drag from dead engine
C_lv	4.5 1rad	Approximation of lift curve slope for tail with similar airfoils
eta_v	0.9	Assumption gathered from example calculations in textbooks
tau	0.3	Gathered from analysis of common aircraft configurations (Figure 21.14)
dh/dt	500 ft/min	Assumption based on requirements of slow aircraft
a	2734 ft/min^2	Assuming takeoff thrust and distance of 1000 ft

Rudder Performance

Lift Force Generated by Rudder at Max Deflection at Max Allowable Speed:

210 N

Resultant Pedal Force:

~ 60 lbs

Courtesy of Jax Rivera via XFLR5

Subsystem Design – Stabilizers 133

Presenter: Jax Rivera

Sizing - Roll Rate/Lift Force Equations

Roll Moment Coefficient relative to Aileron

$$c_{la} = \frac{L_A}{qSb} \qquad L_A = 2 * L_{ailcron} * y_d$$

Lift Equation

 $L = Cl q A \quad q = \frac{\rho(V^2)}{2}$

Roll rate

$$w_x = -2 * \frac{v}{b} * \frac{c_{la}}{c_{lp}} * \frac{\delta_{Aleft} - \delta_{Aright}}{2}$$

Equations from Introduction to Aircraft Stability and Control David A. Caughey Cornell M&AE 5070

Slide Contributors: Jax Rivera

Subsystem Design – Stabilizers 134

Chosen for additional control during taxi

Water Rudder (S 38)

Retractable rudder attached to bottom of planing hull

1 ft² total area

135

Slide Contributors: Austen Roberson